Problem Sheet 6

1. From Theorem 6.12 we have

$$\zeta(s) = 1 + \frac{1}{s-1} - s \int_1^\infty \frac{\{u\}}{u^{1+s}} du, \tag{48}$$

valid for $\operatorname{Re} s > 0$.

i) Deduce that

$$\zeta(s) = s \int_1^\infty \frac{[u]}{u^{1+s}} du$$

for $\operatorname{Re} s > 1$.

Note the integral contains [u] in place of $\{u\}$.

ii) Deduce that

$$\zeta(s) = -s \int_0^\infty \frac{\{u\}}{u^{1+s}} du,$$

for $0 < \operatorname{Re} s < 1$.

Note how the integral runs from 0 and not 1.

iii) Deduce from (48) that for real $\sigma > 0, \sigma \neq 1$ we have

$$\frac{1}{\sigma-1} < \zeta(\sigma) < \frac{\sigma}{\sigma-1}.$$

In particular, $\zeta(\sigma) < 0$ for $0 < \sigma < 1$.

Hint for Part iii) Use $0 \le \{u\} < 1$.

- 2. Let $a_n \in \mathbb{C}$ be a sequence of coefficients and set $A(x) = \sum_{1 \le n \le x} a_n$.
 - i) Use Partial Summation to prove

$$\sum_{n=1}^{N} \frac{a_n}{n^s} = \frac{A(N)}{N^s} + s \int_1^N A(t) \frac{dt}{t^{1+s}},$$
(49)

ii) Assume that there exists a constant C > 0 such that $|A(x)| \leq C$ for all x > 1. Prove that the Dirichlet Series

$$F(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$$

converges for $\operatorname{Re} s > 0$ and satisfies

$$|F(s)| \le C \frac{|s|}{\sigma}$$

there.

3. i) Prove, using the previous question, that the Dirichlet Series

$$F(s) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^s}$$

converges for $\operatorname{Re} s > 0$.

ii) For the Dirichlet series F(s) defined in Part i, prove that

$$F(s) = \left(1 - \frac{1}{2^{s-1}}\right)\zeta(s)$$

for $\operatorname{Re} s > 1$.

Note that we can now use part ii to define $\zeta(s)$ for $\operatorname{Re} s > 0, s \neq 1$, by

$$\zeta(s) = \left(1 - \frac{1}{2^{s-1}}\right)^{-1} F(s) \,. \tag{50}$$

In this way we have a continuation of $\zeta(s)$ to the larger half plane $\operatorname{Re} s > 0$.

Hint: For Part ii consider the partial sums

$$\sum_{n=1}^{2N} \frac{(-1)^{n+1}}{n^s} \quad \text{and} \quad \sum_{n=1}^{2N} \frac{1}{n^s},$$

expressing each as sums over even and odd integers. Combine and then let $N \to \infty$.

4. Look at the proof of

$$\sum_{n \le x} \frac{1}{n} = \log n + \gamma + O\left(\frac{1}{x}\right),\tag{51}$$

to find an expression for γ , Euler's constant, which, with (48) seen in Question 1, gives a proof of

$$\lim_{s \to 1} \left(\zeta(s) - \frac{1}{s-1} \right) = \gamma.$$

5. i) Prove that

$$\lim_{s \to 1} \left(\frac{\zeta'(s)}{\zeta(s)} + \frac{1}{s-1} \right) = \gamma.$$

Hint Writing $\zeta(s) = g(s) / (s-1)$ show that g(1) = 1 and, by using Question 4, $g'(1) = \gamma$.

ii) Prove that

$$\lim_{s \to 1} \left(\frac{\zeta'(s)}{\zeta(s)} + \zeta(s) \right) = 2\gamma$$

6. Show that

$$\zeta^{(\ell)}(s) = \frac{(-1)^{\ell} \ell!}{(s-1)^{\ell+1}} + (-1)^{\ell} \int_{1}^{\infty} \{u\} \frac{\ell \log^{\ell-1} u - s \log^{\ell} u}{u^{s+1}} du$$

for $\operatorname{Re} s > 1$.

Hint Do not attempt to differentiate (48) ℓ times, for there is then the question of how to take a derivative inside an integral. Instead use the method used in lectures when the $\ell = 1$ case was proved.

7. On Problem Sheet 2 you are asked to generalise

$$\sum_{n \le N} \frac{1}{n} = \log N + \gamma + O\left(\frac{1}{N}\right) \tag{52}$$

and prove that for all $\ell \geq 0$ there exists a constant C_{ℓ} such that

$$\sum_{n \le N} \frac{\log^{\ell} n}{n} = \frac{1}{\ell + 1} \log^{\ell + 1} N + C_{\ell} + O\left(\frac{\log^{\ell} N}{N}\right),$$

for integer N. So $C_0 = \gamma$.

The Riemann zeta function has a *Laurent Expansion* at s = 1. This is a Taylor series with a finite number of negative powers allowed, and for the Riemann zeta function looks like

$$\zeta(s) = \frac{1}{s-1} + \sum_{k=0}^{\infty} c_k (s-1)^k,$$

for s close to 1, for some coefficients $c_k, k \ge 0$.

From Question 4 we have $c_0 = \gamma = C_0$. Generalise this and prove that

$$c_{\ell} = \left(-1\right)^{\ell} \frac{C_{\ell}}{\ell 1},$$

for $\ell \geq 1$.

Hint Differentiate the Laurent Expansion sufficiently often to get a formula for c_{ℓ} as a limit as $s \to 1$. Then use Question 6 along with an expression for C_{ℓ} found on Problem Sheet 2.

8. i) Prove that

$$5 + 8\cos\theta + 4\cos 2\theta + \cos 3\theta \ge 0, \tag{53}$$

for all θ .

ii) Deduce that

$$\zeta^{5}(\sigma) \left| \zeta(\sigma + it) \right|^{8} \left| \zeta(\sigma + 2it) \right|^{4} \left| \zeta(\sigma + 3it) \right| \ge 1.$$

Thus the results in Lemmas 6.19 and 6.20 are not the only ones of their type. Can you find others?

Note that (53) has a property in common with Lemma 6.19, namely the polynomials are zero when $\theta = \pi$.

9. You cannot put s = 1 into Theorem 6.11:

$$\sum_{1 \le n \le N} \frac{1}{n^s} = 1 + \frac{1}{s-1} + \frac{N^{1-s}}{1-s} - s \int_1^N \{u\} \frac{du}{u^{s+1}} + \frac{1}{s-1} +$$

because of the s-1 on the denominator. Instead, what is the limit as $s \to 1$, of these two terms with s-1 in their denominator, i.e.

$$\lim_{s \to 1} \left(\frac{1}{s-1} + \frac{N^{1-s}}{1-s} \right)?$$

In this way give an alternative proof of

$$\sum_{1 \le n \le N} \frac{1}{n} = \log N + 1 - \int_1^N \{u\} \frac{du}{u^2}.$$

10. Prove Theorem 6.27, but only for $\sigma \ge 1$ and t > 2, when

$$|\zeta'(\sigma + it)| \le (\log t + 7/4)^2.$$

Hint Estimate each term in (32):

$$\zeta'(s) = -\sum_{n=1}^{N} \frac{\log n}{n^s} - \frac{N^{1-s} \log N}{s-1} - \frac{N^{1-s}}{(s-1)^2} - I_1(s) + sI_2(s),$$

where

$$I_1(s) = \int_N^\infty \frac{\{u\}}{u^{s+1}} du$$
 and $I_2(s) = \int_N^\infty \frac{\{u\} \log u}{u^{s+1}} du.$

11. Results in the lectures concern the size of the Riemann zeta function for $\operatorname{Re} s \geq 1$. In this question we go to the line $\operatorname{Re} s = 1/2$.

Prove that

$$|\zeta(1/2 + it)| \le 4t^{1/2} + 1$$

for $|t| \ge 4$.

Hint Follow the proof of Theorem 6.25, again making use of Theorem 6.24.

Aside It is expected that $\zeta(1/2 + it) \ll t^{\varepsilon}$ for sufficiently large t for all $\varepsilon > 0$, i.e. it grows smaller than any power of t we go to infinity along the line Re s = 1/2. There is a great interest in reducing the exponent 1/2 above.

12. Assume that the Dirichlet Series

$$\sum_{n=1}^{\infty} \frac{a_n}{n^s}$$

converges at $s_0 \in \mathbb{C}$.

i. Prove that the series converges in the half plane *strictly* to the right of s_0 , i.e. for all s with $\operatorname{Re} s > \operatorname{Re} s_0$.

ii. Deduce that the Riemann zeta function **diverges** for all $\operatorname{Re} s < 1$.

Note this still leaves open the question of convergence on $\operatorname{Re} s = 1$.

Hint For the first part show that

$$\sum_{1 \le n \le N} \frac{a_n}{n^s} = \frac{1}{N^{s-s_0}} \sum_{1 \le n \le N} \frac{a_n}{n^{s_0}} - (s-s_0) \int_1^N \sum_{1 \le n \le t} \frac{a_n}{n^{s_0}} \frac{dt}{t^{s-s_0+1}}.$$

3.7

For the deduction concerning divergence of the Riemann zeta function use proof by contradiction, the contradiction coming from the known fact that $\sum_{n=1}^{\infty} 1/n^{\eta}$ diverges for any *real* $\eta < 1$.