Problem Sheet 6

1. From Theorem 6.12 we have

$$
\begin{equation*}
\zeta(s)=1+\frac{1}{s-1}-s \int_{1}^{\infty} \frac{\{u\}}{u^{1+s}} d u \tag{48}
\end{equation*}
$$

valid for $\operatorname{Re} s>0$.
i) Deduce that

$$
\zeta(s)=s \int_{1}^{\infty} \frac{[u]}{u^{1+s}} d u
$$

for $\operatorname{Re} s>1$.
Note the integral contains $[u]$ in place of $\{u\}$.
ii) Deduce that

$$
\zeta(s)=-s \int_{0}^{\infty} \frac{\{u\}}{u^{1+s}} d u
$$

for $0<\operatorname{Re} s<1$.
Note how the integral runs from 0 and not 1 .
iii) Deduce from (48) that for real $\sigma>0, \sigma \neq 1$ we have

$$
\frac{1}{\sigma-1}<\zeta(\sigma)<\frac{\sigma}{\sigma-1}
$$

In particular, $\zeta(\sigma)<0$ for $0<\sigma<1$.
Hint for Part iii) Use $0 \leq\{u\}<1$.
2. Let $a_{n} \in \mathbb{C}$ be a sequence of coefficients and set $A(x)=\sum_{1 \leq n \leq x} a_{n}$.
i) Use Partial Summation to prove

$$
\begin{equation*}
\sum_{n=1}^{N} \frac{a_{n}}{n^{s}}=\frac{A(N)}{N^{s}}+s \int_{1}^{N} A(t) \frac{d t}{t^{1+s}}, \tag{49}
\end{equation*}
$$

ii) Assume that there exists a constant $C>0$ such that $|A(x)| \leq C$ for all $x>1$. Prove that the Dirichlet Series

$$
F(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}
$$

converges for Re $s>0$ and satisfies

$$
|F(s)| \leq C \frac{|s|}{\sigma}
$$

there.
3. i) Prove, using the previous question, that the Dirichlet Series

$$
F(s)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{s}}
$$

converges for $\operatorname{Re} s>0$.
ii) For the Dirichlet series $F(s)$ defined in Part i, prove that

$$
F(s)=\left(1-\frac{1}{2^{s-1}}\right) \zeta(s)
$$

for $\operatorname{Re} s>1$.
Note that we can now use part ii to define $\zeta(s)$ for $\operatorname{Re} s>0, s \neq 1$, by

$$
\begin{equation*}
\zeta(s)=\left(1-\frac{1}{2^{s-1}}\right)^{-1} F(s) \tag{50}
\end{equation*}
$$

In this way we have a continuation of $\zeta(s)$ to the larger half plane $\operatorname{Re} s>0$.

Hint: For Part ii consider the partial sums

$$
\sum_{n=1}^{2 N} \frac{(-1)^{n+1}}{n^{s}} \quad \text { and } \quad \sum_{n=1}^{2 N} \frac{1}{n^{s}},
$$

expressing each as sums over even and odd integers. Combine and then let $N \rightarrow \infty$.
4. Look at the proof of

$$
\begin{equation*}
\sum_{n \leq x} \frac{1}{n}=\log n+\gamma+O\left(\frac{1}{x}\right) \tag{51}
\end{equation*}
$$

to find an expression for γ, Euler's constant, which, with (48) seen in Question 1, gives a proof of

$$
\lim _{s \rightarrow 1}\left(\zeta(s)-\frac{1}{s-1}\right)=\gamma
$$

5. i) Prove that

$$
\lim _{s \rightarrow 1}\left(\frac{\zeta^{\prime}(s)}{\zeta(s)}+\frac{1}{s-1}\right)=\gamma
$$

Hint Writing $\zeta(s)=g(s) /(s-1)$ show that $g(1)=1$ and, by using Question 4, $g^{\prime}(1)=\gamma$.
ii) Prove that

$$
\lim _{s \rightarrow 1}\left(\frac{\zeta^{\prime}(s)}{\zeta(s)}+\zeta(s)\right)=2 \gamma
$$

6. Show that

$$
\zeta^{(\ell)}(s)=\frac{(-1)^{\ell} \ell!}{(s-1)^{\ell+1}}+(-1)^{\ell} \int_{1}^{\infty}\{u\} \frac{\ell \log ^{\ell-1} u-s \log ^{\ell} u}{u^{s+1}} d u
$$

for $\operatorname{Re} s>1$.
Hint Do not attempt to differentiate (48) ℓ times, for there is then the question of how to take a derivative inside an integral. Instead use the method used in lectures when the $\ell=1$ case was proved.
7. On Problem Sheet 2 you are asked to generalise

$$
\begin{equation*}
\sum_{n \leq N} \frac{1}{n}=\log N+\gamma+O\left(\frac{1}{N}\right) \tag{52}
\end{equation*}
$$

and prove that for all $\ell \geq 0$ there exists a constant C_{ℓ} such that

$$
\sum_{n \leq N} \frac{\log ^{\ell} n}{n}=\frac{1}{\ell+1} \log ^{\ell+1} N+C_{\ell}+O\left(\frac{\log ^{\ell} N}{N}\right)
$$

for integer N. So $C_{0}=\gamma$.
The Riemann zeta function has a Laurent Expansion at $s=1$. This is a Taylor series with a finite number of negative powers allowed, and for the Riemann zeta function looks like

$$
\zeta(s)=\frac{1}{s-1}+\sum_{k=0}^{\infty} c_{k}(s-1)^{k}
$$

for s close to 1 , for some coefficients $c_{k}, k \geq 0$.
From Question 4 we have $c_{0}=\gamma=C_{0}$. Generalise this and prove that

$$
c_{\ell}=(-1)^{\ell} \frac{C_{\ell}}{\ell 1},
$$

for $\ell \geq 1$.
Hint Differentiate the Laurent Expansion sufficiently often to get a formula for c_{ℓ} as a limit as $s \rightarrow 1$. Then use Question 6 along with an expression for C_{ℓ} found on Problem Sheet 2.
8. i) Prove that

$$
\begin{equation*}
5+8 \cos \theta+4 \cos 2 \theta+\cos 3 \theta \geq 0 \tag{53}
\end{equation*}
$$

for all θ.
ii) Deduce that

$$
\zeta^{5}(\sigma)|\zeta(\sigma+i t)|^{8}|\zeta(\sigma+2 i t)|^{4}|\zeta(\sigma+3 i t)| \geq 1
$$

Thus the results in Lemmas 6.19 and 6.20 are not the only ones of their type. Can you find others?

Note that (53) has a property in common with Lemma 6.19, namely the polynomials are zero when $\theta=\pi$.
9. You cannot put $s=1$ into Theorem 6.11:

$$
\sum_{1 \leq n \leq N} \frac{1}{n^{s}}=1+\frac{1}{s-1}+\frac{N^{1-s}}{1-s}-s \int_{1}^{N}\{u\} \frac{d u}{u^{s+1}}
$$

because of the $s-1$ on the denominator. Instead, what is the limit as $s \rightarrow 1$, of these two terms with $s-1$ in their denominator, i.e.

$$
\lim _{s \rightarrow 1}\left(\frac{1}{s-1}+\frac{N^{1-s}}{1-s}\right) ?
$$

In this way give an alternative proof of

$$
\sum_{1 \leq n \leq N} \frac{1}{n}=\log N+1-\int_{1}^{N}\{u\} \frac{d u}{u^{2}}
$$

10. Prove Theorem 6.27 , but only for $\sigma \geq 1$ and $t>2$, when

$$
\left|\zeta^{\prime}(\sigma+i t)\right| \leq(\log t+7 / 4)^{2}
$$

Hint Estimate each term in (32) :

$$
\zeta(s)=-\sum_{n=1}^{N} \frac{\log n}{n^{s}}-\frac{N^{1-s} \log N}{s-1}-\frac{N^{1-s}}{(s-1)^{2}}-I_{1}(s)+s I_{2}(s),
$$

where

$$
I_{1}(s)=\int_{N}^{\infty} \frac{\{u\}}{u^{s+1}} d u \quad \text { and } \quad I_{2}(s)=\int_{N}^{\infty} \frac{\{u\} \log u}{u^{s+1}} d u
$$

11. Results in the lectures concern the size of the Riemann zeta function for $\operatorname{Re} s \geq 1$. In this question we go to the line $\operatorname{Re} s=1 / 2$.

Prove that

$$
|\zeta(1 / 2+i t)| \leq 4 t^{1 / 2}+1
$$

for $|t| \geq 4$.

Hint Follow the proof of Theorem 6.25, again making use of Theorem 6.24.

Aside It is expected that $\zeta(1 / 2+i t) \ll t^{\varepsilon}$ for sufficiently large t for all $\varepsilon>0$, i.e. it grows smaller than any power of t we go to infinity along the line $\operatorname{Re} s=1 / 2$. There is a great interest in reducing the exponent 1/2 above.
12. Assume that the Dirichlet Series

$$
\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}
$$

converges at $s_{0} \in \mathbb{C}$.
i. Prove that the series converges in the half plane strictly to the right of s_{0}, i.e. for all s with $\operatorname{Re} s>\operatorname{Re} s_{0}$.
ii. Deduce that the Riemann zeta function diverges for all $\operatorname{Re} s<1$.

Note this still leaves open the question of convergence on $\operatorname{Re} s=1$.

Hint For the first part show that

$$
\sum_{1 \leq n \leq N} \frac{a_{n}}{n^{s}}=\frac{1}{N^{s-s_{0}}} \sum_{1 \leq n \leq N} \frac{a_{n}}{n^{s_{0}}}-\left(s-s_{0}\right) \int_{1}^{N} \sum_{1 \leq n \leq t} \frac{a_{n}}{n^{s_{0}}} \frac{d t}{t^{s-s_{0}+1}} .
$$

For the deduction concerning divergence of the Riemann zeta function use proof by contradiction, the contradiction coming from the known fact that $\sum_{n=1}^{\infty} 1 / n^{\eta}$ diverges for any real $\eta<1$.

