
Problem Sheet 6

1. From Theorem 6.12 we have

ζ(s) = 1 +
1

s− 1
− s

∫ ∞

1

{u}

u1+s
du, (48)

valid for Re s > 0.

i) Deduce that

ζ(s) = s

∫ ∞

1

[u]

u1+s
du

for Re s > 1.

Note the integral contains [u] in place of {u}.

ii) Deduce that

ζ(s) = −s

∫ ∞

0

{u}

u1+s
du,

for 0 < Re s < 1.

Note how the integral runs from 0 and not 1.

iii) Deduce from (48) that for real σ > 0, σ 6= 1 we have

1

σ−1
< ζ(σ) <

σ

σ−1
.

In particular, ζ(σ) < 0 for 0 < σ < 1.

Hint for Part iii) Use 0 ≤ {u} < 1.

2. Let an ∈ C be a sequence of coefficients and set A (x) =
∑

1≤n≤x an.

i) Use Partial Summation to prove

N
∑

n=1

an
ns

=
A (N)

N s
+ s

∫ N

1

A (t)
dt

t1+s
, (49)
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ii) Assume that there exists a constant C > 0 such that |A (x)| ≤ C

for all x > 1. Prove that the Dirichlet Series

F (s) =
∞
∑

n=1

an
ns

converges for Re s > 0 and satisfies

|F (s)| ≤ C
|s|

σ
there.

3. i) Prove, using the previous question, that the Dirichlet Series

F (s) =
∞
∑

n=1

(−1)n+1

ns

converges for Re s > 0.

ii) For the Dirichlet series F (s) defined in Part i, prove that

F (s) =

(

1−
1

2s−1

)

ζ(s)

for Re s > 1.

Note that we can now use part ii to define ζ(s) for Re s > 0, s 6= 1, by

ζ(s) =

(

1−
1

2s−1

)−1

F (s) . (50)

In this way we have a continuation of ζ(s) to the larger half plane
Re s > 0.

Hint: For Part ii consider the partial sums

2N
∑

n=1

(−1)n+1

ns
and

2N
∑

n=1

1

ns
,

expressing each as sums over even and odd integers. Combine and then
let N →∞.
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4. Look at the proof of

∑

n≤x

1

n
= log n+ γ +O

(

1

x

)

, (51)

to find an expression for γ, Euler’s constant, which, with (48) seen in
Question 1, gives a proof of

lim
s→1

(

ζ(s)−
1

s−1

)

= γ.

5. i) Prove that

lim
s→1

(

ζ ′(s)

ζ(s)
+

1

s−1

)

= γ.

Hint Writing ζ(s) = g (s) / (s−1) show that g (1) = 1 and, by using
Question 4, g′ (1) = γ.

ii) Prove that

lim
s→1

(

ζ ′(s)

ζ(s)
+ ζ(s)

)

= 2γ

6. Show that

ζ(ℓ)(s) =
(−1)ℓ ℓ!

(s− 1)ℓ+1
+ (−1)ℓ

∫ ∞

1

{u}
ℓ logℓ−1 u− s logℓ u

us+1
du

for Re s > 1.

Hint Do not attempt to differentiate (48) ℓ times, for there is then the
question of how to take a derivative inside an integral. Instead use the
method used in lectures when the ℓ = 1 case was proved.

7. On Problem Sheet 2 you are asked to generalise

∑

n≤N

1

n
= logN + γ +O

(

1

N

)

(52)
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and prove that for all ℓ ≥ 0 there exists a constant Cℓ such that

∑

n≤N

logℓ n

n
=

1

ℓ+1
logℓ+1 N + Cℓ +O

(

logℓ N

N

)

,

for integer N. So C0 = γ.

The Riemann zeta function has a Laurent Expansion at s = 1. This
is a Taylor series with a finite number of negative powers allowed, and
for the Riemann zeta function looks like

ζ(s) =
1

s−1
+

∞
∑

k=0

ck (s−1)k ,

for s close to 1, for some coefficients ck, k ≥ 0.

From Question 4 we have c0 = γ = C0. Generalise this and prove that

cℓ = (−1)ℓ
Cℓ

ℓ1
,

for ℓ ≥ 1.

Hint Differentiate the Laurent Expansion sufficiently often to get a
formula for cℓ as a limit as s→ 1. Then use Question 6 along with an
expression for Cℓ found on Problem Sheet 2.

8. i) Prove that
5 + 8 cos θ + 4 cos 2θ + cos 3θ ≥ 0, (53)

for all θ.

ii) Deduce that

ζ5(σ) |ζ(σ+it)|8 |ζ(σ+2it)|4 |ζ(σ + 3it)| ≥ 1.

Thus the results in Lemmas 6.19 and 6.20 are not the only ones of their

type. Can you find others?

Note that (53) has a property in common with Lemma 6.19, namely
the polynomials are zero when θ = π.
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9. You cannot put s = 1 into Theorem 6.11:

∑

1≤n≤N

1

ns
= 1 +

1

s−1
+

N1−s

1−s
− s

∫ N

1

{u}
du

us+1
,

because of the s−1 on the denominator. Instead, what is the limit as
s→ 1, of these two terms with s−1 in their denominator, i.e.

lim
s→1

(

1

s−1
+

N1−s

1−s

)

?

In this way give an alternative proof of

∑

1≤n≤N

1

n
= logN + 1−

∫ N

1

{u}
du

u2
.

10. Prove Theorem 6.27, but only for σ ≥ 1 and t > 2, when

|ζ ′(σ+it)| ≤ (log t+ 7/4)2 .

Hint Estimate each term in (32) :

ζ′ (s) = −
N
∑

n=1

log n

ns
−

N1−s logN

s−1
−

N1−s

(s−1)2
− I1 (s) + sI2 (s) ,

where

I1 (s) =

∫ ∞

N

{u}

us+1
du and I2 (s) =

∫ ∞

N

{u} log u

us+1
du.

11. Results in the lectures concern the size of the Riemann zeta function
for Re s ≥ 1. In this question we go to the line Re s = 1/2.

Prove that

|ζ(1/2 + it)| ≤ 4t1/2 + 1

for |t| ≥ 4.
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Hint Follow the proof of Theorem 6.25, again making use of Theorem
6.24.

Aside It is expected that ζ(1/2 + it)≪ tε for sufficiently large t for all
ε > 0, i.e. it grows smaller than any power of t we go to infinity along
the line Re s = 1/2. There is a great interest in reducing the exponent
1/2 above.

12. Assume that the Dirichlet Series

∞
∑

n=1

an
ns

converges at s0 ∈ C.

i. Prove that the series converges in the half plane strictly to the right
of s0, i.e. for all s with Re s > Re s0.

ii. Deduce that the Riemann zeta function diverges for all Re s < 1.

Note this still leaves open the question of convergence on Re s = 1.

Hint For the first part show that

∑

1≤n≤N

an
ns

=
1

N s−s0

∑

1≤n≤N

an
ns0

− (s−s0)

∫ N

1

∑

1≤n≤t

an
ns0

dt

ts−s0+1
.

For the deduction concerning divergence of the Riemann zeta function
use proof by contradiction, the contradiction coming from the known
fact that

∑∞

n=1 1/n
η diverges for any real η < 1.
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